I. Design Specifications

	In response to Honda Motor Company’s request for the design of a Driving Status System (DSS), New Mexico State University’s TTP-7 (Technology Transfer Program, Group 7) is currently in the preliminary states of this proposal. To date, we have the Environment System Simulation (ESS) ready for implementation.

	The DSS is a module placed inside of the car to display output to the dashboard and interact with the driver through pushbuttons. Proof of concept entails the design of an ESS to simulate the car. The DSS, which is the Motorola 6811 series microprocessing chip (MC68HC11), is to take in the inputs produced from the vehicle, consisting of RPM, MPH, fuel flow rate (FFR), and fuel level (FL), make the correct calculations, and then output RPM, MPH, FL, fuel economy (MPG), and tank miles remaining (TMR). The ESS will feed the inputs to the DSS, take the outputs produced from the DSS, and display them appropriately on the dashboard of the vehicle.

	This preliminary report will discuss the design of the dashboard layout and display, the interaction between the control and processing sections of the ESS, and the theoretical hardware design.

�
II. Table of Contents

� TOC \o "1-3" �I. Design Specifications	� GOTOBUTTON _Toc354489176 � PAGEREF _Toc354489176 �1��

II. Table of Contents	� GOTOBUTTON _Toc354489177 � PAGEREF _Toc354489177 �2��

III. The Dashboard	� GOTOBUTTON _Toc354489178 � PAGEREF _Toc354489178 �3��

	Figure III.1:	Theoretical Dashboard	3

	Figure III.2:	Scaled-Down Design Dashboard	4

IV. ESS Overview	� GOTOBUTTON _Toc354489179 � PAGEREF _Toc354489179 �5��

	Figure IV.1:	Control and Processing Interaction	6

V. Hardware Configuration	� GOTOBUTTON _Toc354489180 � PAGEREF _Toc354489180 �7��

	Figure V.1:	Overall Control Section	7

	Figure V.2:	Digitized Slider	8

	Figure V.3:	Trip Odometer Reset (Optional)	9

	Figure V.4:	Units Selector	9

	Figure V.5:	Multi-Purpose Toggle	10

	Figure V.6:	Processing Section	10

	Figure V.7:	Decoding Logic	11

	Figure V.8:	Bar Graphs	12

	Figure V.9:	Cascadable Bar Graphs Driver	12

	Figure V.10:	4-Bit Register	13

	Figure V.11:	All 7-Segment Displays	14

	Figure V.12:	Individual 7-Segment Display	14

	Figure V.13:	7-Segment Driver	15

VI. Conclusion	� GOTOBUTTON _Toc354489181 � PAGEREF _Toc354489181 �16��

�

�
III. The Dashboard

	The first step in the creation of the ESS required a driver-friendly layout of the system outputs, usually displayed on the dashboard. The preliminary design appears in Figure III.1.

��

The annotation under each bar graph and labeled inside each Single Digit LED box is the addressing scheme that we have chosen to work with. These addresses will be explained in more detail later.

	Two complications have kept us from using this design. First is the lack of availability of curved bar graph displays; these will most likely be replaced with straight bar graphs. Second is the cost of the display elements and registers. We have eighteen 7-segment displays shown. Due to the extreme cost of these parts we will eliminate some of these displays for the initial presentation. The hardware will be designed, however, with the option of expansion in the future. This means that all the addressing listed above will still be correct, but pin connections to the trip odometer and the three highest order segments on the odometer will be left free. This way, if Honda so chooses they may connect the remaining outputs and implement the design shown above. Otherwise, they may implement a design as shown in Figure III.2. Also note that this is good reason to leave the odometer reset button available.

��

�
IV. ESS Overview

	The ESS is split into two sections: a control section and a processing section. The processing section maintains the interface to the “real world” as well as the DSS and the control section. The control section interacts with the inputs passed on by the processing section. In this manner of design, the MC68HC11 requires interaction only with the processing section.

	For the interface with the real world, the processing section takes in the inputs from the digitized slider and the three buttons off the dashboard, and outputs them to the control section to decide the correct LEDs to light. The input from the digitized slider is simply an emulation of a gas pedal. As voltage level increases, the MPH will also increase. This will be converted through an analog-digital (A/D) converter on the 6811 after it is passed through the processing section. Available to the driver are the three buttons: the units selector (whether the dashboard displays miles or kilometers), a toggle selector for accessing one of TMR, FFR, and MPG, and the trip odometer reset button (an optional item as discussed previously). These signals will be entered through the manipulation of single-pole single-throw momentary switches that will be debounced by the processing section. The LEDs will indicate to the driver MPH or KPH for the speed, miles or kilometers for the odometer, and which of the modes (TMR, FFR, or MPG) the multi-purpose right-hand digits display.

	In dealing with the microprocessor, the processing section will pass on the RPM, MPH, FR, FL values received from the control section. RPM and MPH will be connected to port A of the MC68HC11, PA0 and PA7 respectively, a connection which is two bits wide. The FR and FL will go to port E (the A/D converter port on the MC68HC11), AN0 and AN1 respectively. The three separate mode values as tracked by the control section, Display, Reset, and Units, will go to port C, PC0-2, PC3, and PC4 respectively. The DSS will return the data followed by the address where the data will be latched through the 8 bit wide port B. If a 1 is in the highest bit of the signal, this instructs the ESS to read and temporarily latch the data on the bus. If this bit is a 0, then it will be the address, or destination, of the previously transmitted data.

	For the interface with the control section, the processing section sends the pushbutton pulses received from the driver, to be latched by counters or flip-flops keeping track of the current state of display modes. The control section will then output this data to the dashboard display as well as return it to the processing section to be passed on to the microprocessor.

	A simple diagram of this is shown in Figure IV.1.

���������������� EMBED PBrush ���

� EMBED Word.Picture.6 ���

�

��

��

��

�

�

�

�
V. Hardware Configuration

	Both the processing and control sections must be implemented using hardware. This section contains a detailed explanation of this hardware configuration.

	The overall control section appears in Figure V.1.

��

	Starting with the digitized slider input, the outputs produced will be the variable frequency pulse for the MPH and the variable width pulse for the RPM. Figure V.2 gives a closer look at this section.

��

	With a low value (0) in the digitized slider, the signal for the MPH (variable frequency) has the widest pulse possible. The RPM signal (variable width) is high only for a brief moment. Opposite effects occur for the highest value (F) out of the digitized slider: the variable frequency has the shortest period and the variable width stays high for the majority of the cycle.

	The MPH signal uses a 4-bit binary counter and a JK flip-flop to keep track of how fast the frequency of the signal should be. The RPM signal has a 4-bit binary counter and a comparator cascaded into another 4-bit binary counter and comparator which maintains the width of the high signal depending on the value of the digitized slider.

	The rest of the control section uses the buttons on the dashboard as inputs to the DSS and a pair of state machines. Since these circuits are dependent only on the buttons, all are asynchronous designs. The reset button is shown in Figure V.3.

��

This is simply a direct connection to reset the value of the trip odometer to 0.

	The units selector is shown in Figure V.4.

��

This signal uses a JKFF, with the button selector wired to the J and K inputs in order to cause toggling of modes when the clock line, which is wired though a buffer to the same selector, rises. This state machine is extremely simple since it only has two states, which are, of course, mutually-exclusive. If the output is to be in miles, then obviously it cannot be in kilometers. In other words, both outputs can be taken directly from the asserted-high and asserted-low outputs of the JKFF.

	The last section is the toggle between the TMR, FFR, and MPG as can be seen in Figure V.5.

��

This is merely a glorified two-bit counter. As the count increases, it toggles between TMR, FFR, and MPG. If the counter reaches an output of 3 it automatically resets, since there are only three states: TMR and the TMR LED, FFR and FFR LED, and MPG and MPG LED.

	Moving on, the processing section of the hardware looks like Figure V.6.

��

There are three major sections to this circuit: the decoding logic; the 7-segment displays; and, the bar graphs.

	Figure V.7 shows the decoding logic.

�

�

This circuit shows the high order and low order nybble. If the highest bit of the high order nybble is a 1, the value will be data to be stored. If it is a 0, it will be the address where the data is to be latched. The data is stored in the user defined circuits (registers) until the address arrives, decoded by a binary to decimal one-hot decoder. At that time, the addresses shown in the dashboard, Figure III.1, will latch the value stored in the user defined circuits.

	The bar graphs are shown in Figure V.8.

��

The bar graphs are depicted as output probes to show the value to which the bar graph is to be lit up. There are a few interesting elements in this circuit.

	First, the individual LEDs in a 15 segment section are operated by the logic in the user-defined circuit shown in Figure V.9.

��

The data enters and travels through the DMUXes. Notice all the AND gates attached to the outputs of the DMUXes. Usually, a bar graph’s LEDs light consecutively as opposed to individually. Because a DMUX only outputs a high on one line and zeros on the rest, these AND gates are required to hold the previous values at a high voltage. This subcircuit also has a CASCADE input. Notice that the speedometer has twice as much resolution as the RPM bar graph (shown in the middle of Figure V.7) and the fuel level display (shown on the left). This user-defined circuit can be cascaded such that the lower section of lights can be lit all the way up on the bar graph.

��

	Second, the other user defined circuit is the 4 bit register with a triple AND latch, as shown in Figure V.10.

Figure V.10 holds the value while the cascadable bar-graph driver element displays the information.

	Figure V.11 shows all eighteen 7-segment displays. (Remember that we’ll probably use fewer than this, but the option is still there for us if we choose to use this many.) There are four rows with different amounts of 7-segment displays. The rows are (from top to bottom): TMR, FFR, MPG, MPH/KPM, Odometer, and Trip Odometer.

��

��

	Figure V.12 shows a closer look of an individual segment. The user-defined circuit is merely a similar latch to the 4-bit register that was shown in Figure V.10. This modified version is shown in Figure V.13. The output of the this user-defined register is directed as inputs to the 7-segment display.

��

	Figure V.13 differs from Figure V.10 by the BCD to 7-segment display element (along with the NAND and OR gates). The addition of the NAND and OR gates allow us to disable the driver for any 4 bit value greater than 9. In this way, we may blank any display by sending any value between A through F to be stored in the appropriate register. The reason for this blanking is so the driver does not see any garbage that may be produced during calculations.

�
VI. Conclusion

	The actual implementation of this design into hardware will not be easy. We have constructed some circuits using buffers to compensate for problems such as timing delays. These hardware delays may not be consistent with the ones simulated by the computer software.

	Furthermore, we plan to implement our design in the Altera 910 series chips to reduce the total amount of glue hardware involved in this design. Altera should allow us to program the hardware instead of actually having to breadboard it. This will ease some of the timing problems mentioned above. However, due to the large number of gates we must emulate, it may require multiple Altera chips to complete this task.

	Environment System Simulation	Group 7

	� PAGE �1�	� REF _Ref354113688 * MERGEFORMAT �I. Design Specifications�

	� PAGE �2�	� REF _Ref354114686 * MERGEFORMAT �II. Table of Contents�

	� PAGE �4�	� REF _Ref354114720 * MERGEFORMAT �III. The Dashboard�

	� PAGE �6�	� REF _Ref354119966 * MERGEFORMAT �IV. ESS Overview�

	� PAGE �15�	� REF _Ref354152868 * MERGEFORMAT �V. Hardware Configuration�

	� PAGE �16�	� REF _Ref354488472 * MERGEFORMAT �VI. Conclusion�

Figure III.1

Figure III.2

RPM

FR

FL

AN0

ADR1

AN1

ADR2

	PC0,1,2	PC3	PC4

Display (3), Reset (1), Units (1)

To 6811 Port C

PA0

PA7

MPH

To Display

From 6811 Port B

out only

(8 bits wide):

Low order � EMBED Equation.2 ��� A blanks segments

1xxx xxxx DATA

Hi	Lo

0xxx xxxx ADDR

Hi	Lo

Low order + 1 bit high order specifies bar graph values

To 6811 Port A

 (2 bits)

To 6811 Port E

 (A/D Converter)

Addresses as recognized by dashboard hardware

Figure IV.1

Figure V.1

Figure V.2

Figure V.3

Figure V.4

Figure V.5

Figure V.6

Figure V.7

Figure V.8

Figure V.9

Figure V.10

Figure V.11

Figure V.12

Figure V.13

